THERMAL SELF-FOCUSING OF ELECTROMAGNETIC WAVES
IN A COMPLETELY IONIZED PLASMA
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Self-focusing effects can be important in propagation of electromagnetic waves in plasma. One of the
possible mechanisms for self-focusing (thermal) is manifested over a wide range of plasma parameters, en-
compassing both laboratory and ionospheric or cosmic plasma. In this case, as experiments show, thermal
self-focusing can appear at radiation powers of about 100 watts. A large number of papers is devoted to an
analysis of thermal self-focusing (see, for example, [1-5]).

In this paper, we examine thermal self-focusing of electromagnetic waves in the millimeter range in a
completely ionized plasma. If we limit ourselves to pulses with microsecond duration 7 and characteristic
transverse sizes r; in the range 1-10 c¢m, then if is possible to use an average interaction of the electromag-
netic field with the plasma, It is assumed that the condition for quasilinearity of the plasma is satisfied and
that the absorption of energy in the field by the plasma stems from simple motion of electrons in the field of
the wave without taking into account turbulence, decay process, and so on, while energy is exchanged by plas-
ma components due to Coulomb collisions. These assumptions are valid in the experimental situations men-
tioned above.

On the strength of this, we will use a hydrodynamic deseription of the plasma motion. Evidently, in this
case, it is possible to neglect the motion of the plasma along the axis of the pulse.

In most theoretical papers on thermal self-focusing, it is assumed that the deviations of the plasma
parameters from their equilibrium values are small. Then, it is possible to use the linearized equations of
hydrodynamics. However, often such an approach is not adequate and, therefore, it is necessary to examine
a complete system of equations of hydrodynamics. An example is the problem related to uhf heating of a plas-
ma, where the plasma parameters can greatly deviate from their equilibrium values.

Under typical experimental conditions, i.e., plasma density n of the order of 104-10'% cm™® and plasma
temperature T in the interval 0.1-1 eV, the electron—ion collision frequency vg; is of the order of 1019 sec™!,
Therefore, the characteristic time for equalization of the temperatures of plasma components, equal to (M/
m) /Vei, where M is the mass of an ion and m is the mass of an electron, is 1077-10~8 sec, which is much less
than the duration of the pulse. It follows from this that the temperatures of the plasma components can be as-
sumed to be identical. For a similar reason, it is possible to neglect the ionic thermal conductivity, since
under the conditions indicated the characteristic time for it is 1072-10"% sec.

The complete system of equations that describes thermal self-focusing under these conditions, for
axially symmetric beams, has the form
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Here, the z axis is directed along the pulse axis; W =3nT + (1/2)(M + m)v?n; v is the radial velocity of the
plasma; e is the charge of an elecfron; w and E are the frequency and amplitude of the wave field, so that the
intensity of the electric field is& = (1/V2)(Eeiot + E*e~wf) k=w/c; p=nT is the plasma pressure; Te is the
average free flight time of electrons in the plasma.
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We note that in these equations the electrostriction pressure
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where wp is the plasma frequency, is not taken into account.

The ratio of the high-frequency pressure force Vpgi ~ pst/ ry to the thermal pressure force Vpp ~ p1/
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where py ~ 4~ (—of~) veit| E % and rp ~ vy + v7 is the characteristic scale of the temperature nonuniformity.

It follows from here that it is important to take into account striction when vejr <1, i.e., for a collisionless
plasma and for v/rye; 2 1.

For the plasma parameters and fields examined here (n ~ 10 em™, T~ 0.1-1 eV, 7 ~ 107% sec, r, ~
1 cm), the quantities vo; and v have the following order of magnitude: ve; ~ 10 sec™, v £ 105-10° cm - sec™/,
when vejT > 1 and v/rge; < 1 and, therefore, it is not important to take into account striction, However, as
the temperature increases, the contribution of striction will increase rapidly and already for T ~ 5-10 eV the

striction pressure will become dominant, since the ratio v/vg; increases like /2,

At the initial stage of self-focusing, the deviations n' and T' from the equilibrium values n, and Tj are
small. Then, we obtain from (1), in the first approximation, the system of equations
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where cg = (T/ M)I/2 is the velocity of sound and n is the coefficient of thermal conductivity of the plasma.

The behavior of the solutions of system (2) depends on the quantities c¢g and ®. For small cg and »,i.e.,
cg K ry/7and n < r%no/ r, as shown in [6], self-focusing is accompanied by strong self-modulation of the
pulse. In this case, the maximum attainable pulse amplitude increases as the duration of the starting pulse
approaches some critical value 7, like (1, — 7)-%2,

Let us now examine the system (2) without assuming that n’ and T' are small. Using the parabolic ap-
proximation, i.e., setting

E =P (t)exp (—— rzlrﬁFz)/F,
n' = N(z)g exp (—rg/ry),

we obtain equations for the functions F(z, t) and g(z, t)
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where B and ¥ are some constants,

For large amplitudes 1/ F and g, if it is assumed that these quantities increase slowly as functions of
their arguments, we can neglect the derivatives in @3). Then we obtain the estimate
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where a; and a, are constants.
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Thus, at the initial stage of self~focusing, we can expect exponential growth in the field maximum and
perturbation of the density with time. The growth increment in this case increases with decreasing sound -
velocity., On the whole, the picture is close to that for self-focusing of pulses in media with a Kerr nonlinear-
ity (see [6]).

In order to study the nonlinear stage of self-focusing, it is necessary fo solve the system (1) numeri-
cally, However, certain conclusions can be drawn by leaving the linear approximation, In the linear approxi- -
mation, the coefficient of absorption is assumed to be constant, but in actuality, its magnitude is proportional
to the density and decreases with temperature like T%/2, Since in the process of self-focusing, the density
drops, while the temperature decreases, the coefficient of absorption must decrease, This, in its turn, slows
down self-focusing and must lead to its saturation,

Let us estimate the range of temperatures in which thermal self-focusing can exist, Evidently, this
range determines both the temperature of the initial plasma, for which self-focusing is possible, as well as
the maximum attainable temperature in the self-focusing process.

An estimate for the density perturbation follows from the equation for the field in (1)
n' = mctlbaetrs. 4)
From the second equation of the same system, we obtain
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while from the third equation, we have the estimates
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Substituting the two last estimates into (4), we obtain
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On the other hand, at the developed stage of self-focusing, when T' > T, and, therefore, T ~ T', we
obtain from (5)
T > Mctve). (7)
Inequalities (6) and (7) give the approximate boundaries for the temperature range sought,

For convenience in consfructing a numerical model, we transform to dimensionless variables in (1), If
t, r, z, n, v, T, and E are measured in units 1y, ry, kr%, vy = cst/rO, T, and E,, respectively, then, taking
into account the inequality w?r? > 1, we obtain

an v d

G tr o =0 Srt =gt = —p-nl,
) P A A T L R’y ) | n*| B
—at—(nT+?»nv)+;—6rrv(3 nl - nm,)—--r—a—;rT F—{-XW’ (8)
0: 08 1 8 ai  _ in® n _
R traw T\ | E0

) i 2 9
where v =tgvy/ry; w = 2T4t/ Mugro = 2; &= Mvi/6Ty; M =aw?Ty ng X = —3—ruae2T},/2 | E [fing; 6 = 4dnorgoe*Ts? /me?;

570“T3/2 . . crs
~———2- are dimensjonless quantities,

3mn0r0 .

and ¥ =

Within the scope of system (8), we modelied the propagation of pulses having an initial profile of the form
E = dexp (— r¥irg— t/13),

with the following base values of the parameters: v = 0.2, p =2, A =0, ¢ = 300, and 5 = 25, These parameters :
correspond te a hydrogen plasma with an initial temperature of about 0.1 eV, density 10" ¢cm™, pulse duration
0.2-107% sec, and pulse width 0.3 cm with the incident radiation frequency 4 -10¥ sec™!,

In the numerical modelling, the initial temperature of the plasma and the incident pulse energy were
varied,
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Fig. 2

Figure 1 illustrates the exponential growth at the field maximum E, = max E and maximum density per-
turbation ny, = maxn' along the pulse axis at the initial stage of self-focusing, following from an analysis of
the linearized system (2). As is evident from numerical experiments, the conclusion drawn is quite well con-
firmed, if cg is sufficiently large; i.e., cq7/ 1y > 1. At later stages of self-focusing, the rate of growth of Epy
and nyy, slows down and oscillations even appear.

Figure 2 shows the dependence of the maximum field amplitude attainable with self-focusing Eygx =
max | E % on the energy of the initial pulse. The effects of self-focusing appear beginning with an amplitude
in the initial pulse of 0.5 cgse. As the starting amplitude increases, the maximum intensity increases quite
rapidly to some level, which in our calculations exceeded the initial value by a factor of 6-8, After attaining
the maximum, the field amplitude stabilized at a level of about 1.5 cgse. Approximately this picture was ob-
served experimentally in [2].

Until saturation is achieved, the pulse profile remains smooth. If the maximum of the amplitude at-
tained does not fall into the saturation region, then after the maximum is attained the pulse spreads out and
is absorbed by the plasma.

If, on the other hand, the power in the pulse is such that saturation of self-focusing is attained, then
its evolution is of a more complicated nature, After the maximum amplitude is attained, the pulse spreads
out as before, but in contrast to the case of low powers, in this case, a new maximum appears and begins to
grow in front of the field maximum. Energy flows into the region of the new peak, After attaining some level,
a new peak arises in front of this peak and the picture is repeated, while there is still energy in the pulse.
Thus, for sufficiently high pulse power, its evolution represents a sequence of pulsations-spikes that gradually
decay due to absorption. We note that these peaks in the amplitude remain practically stationary in space, i.e.,
stationary luminous points, standing foci, are formed on the pulse axis.

The typical evolution of the axial profile of a pulse after attaining the first maximum is shown in Fig. 3.

These results can be interpreted as follows: in the vicinity of the peak in the amplitude, the tempera-
ture greatly increases and the plasma density drops. In the calculations presented, the temperature on axis
increased by a factor of 4-6, but the plasma density decreased by a approximately a factor of 2. As a whole,
this leads to a decrease in the absorption coefficient of the plasma (approximately by a factor of 40 for the
changes in the parameters indicated above), i.e., to saturation of the nonlinearity. Energy flows, being weakly
absorbed, through the region with high transparency formed in the plasma and, if enough of it is left, a new
peak can form somewhere in front. The evolution of the plasma temperature on axis is presented in Fig. 4.

Let us consider the role of the electronic thermal conductivity. For the parameters that we have chosen,
the dimensionless coefficient of thermal conductivity is about 0.01. The introduction of such a coefficient of
thermal conductivity into the equations leads to practically analogous results, having an insignificant effect
near the temperature maximum, However, as the initial temperature is increased by a factor of 1.5, the ef-
fective thermal conductivity turned out to be significant, since the coefficient of electronic thermal conductivity
increases with temperature like T5/2. It is the increase in the absorption coefficient at high temperatures that
led to saturation in self focusing in this case.

The nonlocal nature of the distribution of temperature and density did not have a significant effect on
saturation, which arose at the leading edge of the pulse, since in this region the scale of the temperature non-
uniformity r ~ ry+ vt and that of density r, ~ ry + (v + cg)t are of the order of the transverse size of the
pulse r,. However, for large t and small z, i.e., on the trailing edge of the pulse (see Fig. 3), the scale of
the nonuniformity ry, begins to exceed the size of the pulse, diffraction spreading occurs, and self-focusing
ceases,
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We note that at the developed stage of self-focusing, there arises strong convective motion of plasma
out of the near-axial region, and a velocity profile close to a shock profile forms, as shown in Fig. 5.

The results of the numerical modelling presented above also encompass the range of variation of para-
meters of the ionospheric plasma, for which self-focusing of waves in the meter range was observed in [7, 8].
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